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Preface

Essentials of Software Engineering was born from our experiences in teaching 
introductory material on software engineering. Although there are many books 
on this topic available in the market, few serve the purpose of introducing only 
the core material for a 1-semester course that meets approximately 3 hours  
a week for 16 weeks. With the proliferation of small web applications, many new 
information technology personnel have entered the field of software engineer-
ing without fully understanding what it entails. This book is intended to serve 
both new students with limited experience as well as experienced information 
technology professionals who are contemplating a new career in the software 
engineering discipline. The complete life cycle of a software system is covered 
in this book, from inception to release and through support.

The content of this book has also been shaped by our personal experiences 
and backgrounds—one author has more than 25 years in building, supporting, 
and managing large and complex mission-critical software with companies such 
as IBM, Blue Cross Blue Shield, MARCAM, and RCA; another author has experi-
ence involving extensive expertise in constructing smaller software with Agile 
methods at companies such as Microsoft and Amazon; and the third author is 
bilingual and has broad software engineering teaching experiences with both 
U.S. college students and non-U.S. Spanish-speaking students.

Although new ideas and technology will continue to emerge and some 
of the principles introduced in this book may have to be updated, we believe 
that the underlying and fundamental concepts we present here will remain.



Preface to the Fourth Edition
Since the publication of the third edition, the computing industry has moved faster toward 
service applications and social media. While the software engineering fundamentals have 
stayed relatively stable, we decided to make a few modifications to reflect some of the 
movements in software engineering, including the enhancements of teaching aids to this 
book. It is our goal to continue keeping the content of the book concise enough to be 
taught in a 16-week, 1-semester course.

The following is a list of major enhancements made for the fourth edition.

�	Discussion on kanban methodology in Chapter 5
�	REST distributed processing architecture in Chapter 7
�	Data design, analysis and “big data” in Chapter 7
�	Code reuse in Chapter 9
�	Cloud computing in Chapter 9
�	Sample team projects available online for students and instructors
�	Updated and enhanced instructor resources

In addition, we have made small modifications to some sentences throughout the book 
to improve the expression, emphasis, and comprehension. We have also received input 
from those who used our first, second, and third editions of the book from different uni-
versities and have corrected the grammatical and spelling errors. Any remaining error 
is totally ours.

The first, second, and third editions of this book have been used by numerous 
colleges and universities, and we thank them for their patience and input. We have 
learned a lot in the process. We hope the fourth edition will prove to be a better one 
for all future readers.

Organization of the Book
Chapters 1 and 2 demonstrate the difference between a small programming project and 
the effort required to construct a mission-critical software system. We purposely took two 
chapters to demonstrate this concept, highlighting the difference between a single-person 
“garage” operation and a team project required to construct a large “professional” system. 
The discussion in these two chapters delineates the rationale for studying and under-
standing software engineering. Chapter 3 is the first place where software engineering is 
discussed more formally. Included in this chapter is an introduction to the profession of 
software engineering and its code of ethics.

The traditional topics of software processes, process models, and methodologies are 
covered in Chapters 4 and 5. Reflecting the vast amount of progress made in this area, these 
chapters explain in extensive detail how to evaluate the processes through the Capability 
Maturity Models from the Software Engineering Institute (SEI).

Chapters 6, 7, 9, 10, and 11 cover the sequence of development activities from require-
ments through product release at a macro level. Chapter 7 includes an expanded UI design 
discussion with an example of HTML-Script-SQL design and implementation. Chapter 8, 
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following the chapter on software design, steps back and discusses design characteristics 
and metrics utilized in evaluating high-level and detail designs. Chapter 11 discusses not 
only product release, but the general concept of configuration management.

Chapter 12 explores the support and maintenance activities related to a software sys-
tem after it is released to customers and users. Topics covered include call management, 
problem fixes, and feature releases. The need for configuration management is further 
emphasized in this chapter. Chapter 13 summarizes the phases of project management, 
along with some specific project planning and monitoring techniques. It is only a summary, 
and some topics, such as team building and leadership qualities, are not included. The 
software project management process is contrasted from the development and support 
processes. Chapter 14 concludes the book and provides a view of the current issues within 
software engineering and the future topics in our field.

The appendices give readers and students insight into possible results from major 
activities in software development with the “essential samples” for a Team Plan, Software 
Development Plan, Requirements Specification, Design Plan, and Test Plan. An often asked 
question is what a requirements document or a test plan should look like. To help answer 
this question and provide a starting point, we have included sample formats of possible 
documents resulting from the four activities of Planning, Requirements, Design, and Test 
Plan. These are provided as follows:

�	Appendix A: Essential Software Development Plan (SDP)
�	Appendix B: Essential Software Requirements Specifications (SRS)
�	Example 1: Essential SRS—Descriptive
�	Example 2: Essential SRS—Object Oriented
�	Example 3: Essential SRS—IEEE Standard
�	Example 4: Essential SRS— Narrative Approach

�	Appendix C: Essential Software Design
�	Example 1: Essential Software Design—UML
�	Example 2: Essential Software Design—Structural

�	Appendix D: Essential Test Plan

Many times in the development of team projects by novice software engineers there is a 
need for specific direction on how to document the process. The four appendices were 
developed to give the reader concrete examples of the possible essential outlines. Each 
of the appendices gives an outline with explanations.  This provides the instructor with 
concrete material to supplement class activities, team project assignments, and/or inde-
pendent work.

The topical coverage in this book reflects those emphasized by the IEEE Computer 
Society–sponsored Software Engineering Body of Knowledge (SWEBOK) and by the Soft-
ware Engineering 2004 Curriculum Guidelines for Undergraduate Degree Program in Software 
Engineering. The one topic that is not highlighted but is discussed throughout the book 
concerns quality—a topic that needs to be addressed and integrated into all activities.  
It is not just a concern of the testers. Quality is discussed in multiple chapters to reflect its 
broad implications and cross activities.
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Suggested Teaching Plan
All the chapters in this book can be covered within 1 semester. However, some instructors 
may prefer a different emphasis:
�	Those who want to focus on direct development activities should spend more time on 

Chapters 6 through 11.
�	Those who want to focus more on indirect and general activities should spend more 

time on Chapters 1, 12, and 13.
It should be pointed out that both the direct development and the indirect support 

activities are important. The combined set forms the software engineering discipline.
There are two sets of questions at the end of each chapter. For the Review Questions, 

students can find answers directly in the chapter. The Exercises are meant to be used for 
potential class discussion, homework, or small projects.

Supplements
Slides in PowerPoint format, Answers to End-of-Chapter Exercises, Sourcecode, and sample 
Test Questions are available for free instructor download. To request access, please visit 
go.jblearning.com/Tsui4e or contact your account representative.
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OBJECTIVES

1

CHAPTER 1

Creating a Program

�� Analyze some of the issues involved in producing a simple program:
�� Requirements (functional, nonfunctional)
�� Design constraints and design decisions
�� Testing
�� Effort estimation
�� Implementation details

�� Understand the activities involved in writing even a simple program.
�� Preview many additional software engineering topics found in the later 
chapters.



1.1  A Simple Problem
In this chapter we will analyze the tasks involved in writing a relatively simple program. 
This will serve as a contrast to what is involved in developing a large system, which is 
described in Chapter 2.

Assume that you have been given the following simple problem: “Given a collection of 
lines of text (strings) stored in a file, sort them in alphabetical order, and write them to an-
other file.” This is probably one of the simplest problems you will be involved with. You have 
probably done similar assignments for some of your introduction to programming classes.

1.1.1  Decisions, Decisions
A problem statement such as the one mentioned in the above simple problem does not 
completely specify the problem. You need to clarify the requirements in order to produce 
a program that better satisfies the real problem. You need to understand all the program 
requirements and the design constraints imposed by the client on the design, and you 

need to make important technical decisions. A complete problem 
statement would include the requirements, which state and qualify 
what the program does, and the design constraints, which depict 
the ways in which you can design and implement it.

The most important thing to realize is that the word requirements 
is not used as it is in colloquial English. In many business transactions, 
a requirement is something that absolutely must happen. However, 

in software engineering many items are negotiable. Given that every requirement will 
have a cost, the clients may decide that they do not really need it after they understand 
the related cost. Requirements are often grouped into those that are “needed” and those 
that are “nice to have.”

It is also useful to distinguish between functional requirements—what the program 
does—and nonfunctional requirements—the manner in which the program must be-
have. In a way, a function is similar to that of a direct and indirect object in grammar. Thus 
the functional requirements for our problem will describe what it does: sort a file (with 
all the detail required); the nonfunctional requirements will describe items such as per-
formance, usability, and maintainability. Functional requirements tend to have a Boolean 
measurement where the requirement is either satisfied or not satisfied, but nonfunctional 

requirements tend to apply to things measured on a linear scale 
where the measurements can vary much more. Performance and 
maintainability requirements, as examples, may be measured in 
degrees of satisfaction.

Nonfunctional requirements are informally referred as the “ilities,” 
because the words describing most of them will end in -ility. Some 

of the typical characteristics defined as nonfunctional requirements are performance, 
modifiability, usability, configurability, reliability, availability, security, and scalability.

Besides requirements, you will also be given design constraints, such as the choice of 
programming language, platforms the system runs on, and other systems it interfaces with. 
These design constraints are sometimes considered nonfunctional requirements. This is 
not a very crisp or easy-to-define distinction (similar to where requirement analysis ends 

Program requirements  Statements that 
define and qualify what the program needs 
to do. 
Design constraints  Statements that con-
strain the ways in which the software can be 
designed and implemented. 

Functional requirements  What a program 
needs to do. 
Nonfunctional requirements  The manner 
in which the functional requirements need to 
be achieved. 
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and design starts); and in borderline cases, it is defined mainly by consensus. Most devel-
opers will include usability as a nonfunctional requirement, and the choice of a specific 
user interface such as graphical user interface (GUI) or web-based as a design constraint. 
However, it can also be defined as a functional requirement as follows: “the program dis-
plays a dialog box 60 by 80 pixels, and then . . .”

Requirements are established by the client, with help from the software engineer, while 
the technical decisions are often made by the software engineer without much client in-
put. Oftentimes, some of the technical decisions such as which programming languages 
or tools to use can be given as requirements because the program needs to interoperate 
with other programs or the client organization has expertise or strategic investments in 
particular technologies.

In the following pages we will illustrate the various issues that software engineers 
confront, even for simple programs. We will categorize these decisions into functional and 
nonfunctional requirements, design constraints, and design decisions. But do keep in mind 
that other software engineers may put some of these issues into a different category. We 
will use the simple sorting problem presented previously as an example.

1.1.2  Functional Requirements
We will have to consider several aspects of the problem and ask many questions prior to 
designing and programming the solution. The following is an informal summary of the 
thinking process involved with functional requirements:

�� Input formats: What is the format for the input data? How should data be stored? What 
is a character? In our case, we need to define what separates the lines on the file. This is 
especially critical because several different platforms may use different separator characters. 
Usually some combination of new-line and carriage return may be considered. In order 
to know exactly where the boundaries are, we also need to know the input character 
set. The most common representation uses 1 byte per character, which is enough for 
English and most Latin-derived languages. But some representations, such as Chinese 
or Arabic, require 2 bytes per character because there are more than 256 characters 
involved. Others require a combination of the two types. With the combination of both 
single- and double-byte character representations, there is usually a need for an escape 
character to allow the change of mode from single byte to double byte or vice versa. 
For our sorting problem, we will assume the simple situation of 1 byte per character.
�� Sorting: Although it seems to be a well-defined problem, there are many slightly and 
not so slightly different meanings for sorting. For starters—and of course, assuming 
that we have English characters only—do we sort in ascending or descending order? 
What do we do with nonalphabetic characters? Do numbers go before or after letters 
in the order? How about lowercase and uppercase characters? To simplify our problem, 
we define sorting among characters as being in numerical order, and the sorting of the 
file to be in ascending order.
�� Special cases, boundaries, and error conditions: Are there any special cases? How should 
we handle boundary cases such as empty lines and empty files? How should different 
error conditions be handled? It is common, although not good practice, to not have 
all of these requirements completely specified until the detailed design or even the 
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implementation stages. For our program, we do not treat empty lines in any special 
manner except to specify that when the input file is empty the output file should be 
created but empty. We do not specify any special error-handling mechanism as long as 
all errors are signaled to the user and the input file is not corrupted in any way.

1.1.3  Nonfunctional Requirements
The thinking process involved in nonfunctional requirements can be informally summa-
rized as follows:

�� Performance requirements: Although it is not as important as most people may think, 
performance is always an issue. The program needs to finish most or all inputs within a 
certain amount of time. For our sorting problem, we define the performance requirements 
as taking less than 1 minute to sort a file of 100 lines of 100 characters each.
�� Real-time requirements: When a program needs to perform in real-time, which means it 
must complete the processing within a given amount of time, performance is an issue. 
The variability of the running time is also a big issue. We may need to choose an algo-
rithm with a less than average performance, if it has a better worst-case performance. 
For example, Quick Sort is regarded as one of the fastest sorting algorithms; however, 
for some inputs, it can have poor performance. In algorithmic terms, its expected run-
ning time is on the order of n log(n), but its worst-case performance is on the order of 
n squared. If you have real-time requirements in which the average case is acceptable 
but the worst case is not, then you may want to choose an algorithm with less variability, 
such as Heap Sort or Merge Sort. Run-time performance analysis is discussed further 
in Main and Savitch (2010).
�� Modifiability requirements: Before writing a program, it is important to know the life 
expectancy of the program and whether there is any plan to modify the program. If the 
program is to be used only once, then modifiability is not a big issue. On the other hand, 
if it is going to be used for 10 years or more, then we need to worry about making it 
easy to maintain and modify. Surely, the requirements will change during that 10-year 
period. If we know that there are plans to extend the program in certain ways, or that 
the requirements will change in specific ways, then we should prepare the program for 
those modifications as the program is designed and implemented. Notice that even if 
the modifiability requirements are low, this is not a license to write bad code, because 
we still need to be able to understand the program for debugging purposes. For our 
sorting example, consider how we might design and implement the solution if we know 
that down the road the requirement may change from descending to ascending order 
or may change to include both ascending and descending orders.
�� Security requirements: The client organization and the developers of the software need 
to agree on security definitions derived from the client’s business application goals, 
potential threats to project assets, and management controls to protect from loss, 
inaccuracy, alteration, unavailability, or misuse of the data and resources. Security 
might be functional or nonfunctional. For example, a software developer may argue 
that a system must protect against denial-of-service attacks in order to fulfill its mis-
sion. Security quality requirements engineering (SQUARE) is discussed in Mead and 
Stehney (2005).
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�� Usability requirements: The end users for the program have specific background, educa-
tion, experience, needs, and interaction styles that are considered in the development 
of the software. The user, product, and environmental characteristics of the program 
are gathered and studied for the design of the user interface. This nonfunctional 
requirement is centered in the interaction between the program and the end user. 
This interaction is rated by the end user with regards to its effectiveness, efficiency, 
and success. Evaluation of usability requirements is not directly measurable since it 
is qualified by the usability attributes that are reported by the end users in specific 
usability testing.

1.1.4  Design Constraints
The thinking process related to design constraints can be summarized as follows:

�� User interface: What kind of user interface should the program have? Should it be 
a command-line interface (CLI) or a graphical user interface (GUI)? Should we use a 
web-based interface? For the sorting problem, a web-based 
interface doesn’t sound appropriate because users would need 
to upload the file and download the sorted one. Although GUIs 
have become the norm over the past decade or so, a CLI can be 
just as appropriate for our sorting problem, especially because it would make it easier 
to invoke inside a script, allowing for automation of manual processes and reuse of 
this program as a module for future ones. This is one of those design considerations 
that also involves user interface. In Section 1.4, we will create several implementations, 
some CLI based and some GUI based. Chapter 7 also discusses user-interface design 
in more detail.
�� Typical and maximum input sizes: Depending on the typical input sizes, we may want to 
spend different amounts of time on algorithms and performance optimizations. Also, 
certain kinds of inputs are particularly good or bad for certain algorithms; for example, 
inputs that are almost sorted make the naive Quick Sort implementations take more 
time. Note that you will sometimes be given inaccurate estimates, but even ballpark 
figures can help anticipate problems or guide you toward an appropriate algorithm. In 
this example, if you have small input sizes, you can use almost any sorting algorithm. 
Thus you should choose the simplest one to implement. If you have larger inputs but 
they can still fit into the random access memory (RAM), you need to use an efficient 
algorithm. If the input does not fit on RAM, then you need to choose a specialized 
algorithm for on-disk sorting.
�� Platforms: On which platforms does the program need to run? This is an important busi-
ness decision that may include architecture, operating system, and available libraries 
and will almost always be expressed in the requirements. Keep in mind that, although 
cross-platform development has become easier and there are many languages designed 
to be portable across platforms, not all the libraries will be available in all platforms. 
There is always an extra cost on explicitly supporting a new platform. On the other 
hand, good programming practices help achieve portability, even when not needed. 
A little extra consideration when designing and implementing a program can minimize 
the potentially extensive work required to port to a new platform. It is good practice to 
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perform a quick cost-benefit analysis on whether to support additional platforms and 
to use technologies and programming practices that minimize portability pains, even 
when the need for supporting new platforms is not anticipated.
�� Schedule requirements: The final deadline for completing a project comes from the client, 
with input from the technical side on feasibility and cost. For example, a dialogue on 
schedule might take the following form: Your client may make a request such as “I need 
it by next month.” You respond by saying, “Well, that will cost you twice as much than if 
you wait two months” or “That just can’t be done. It usually takes three months. We can 
push it to two, but no less.” The client may agree to this, or could also say, “If it’s not done 
by next month, then it is not useful,” and cancel the project.

1.1.5  Design Decisions
The steps and thoughts related to design decisions for the sorting problem can be sum-
marized as follows:

�� Programming language: Typically this will be a technical design decision, although it is 
not uncommon to be given as a design constraint. The type of programming needed, the 
performance and portability requirements, and the technical expertise of the developers 
often heavily influence the choice of the programming language.
�� Algorithms: When implementing systems, there are usually several pieces that can be 
influenced by the choice of algorithms. In our example, of course, there are a variety of 
algorithms we can choose from to sort a collection of objects. The language used and the 
libraries available will influence the choice of algorithms. For example, to sort, the easiest 
solution would be to use a standard facility provided by the programming language 
rather than to implement your own. Thus, use whatever algorithm that implementation 
chooses. Performance will usually be the most important influence in the choice of an 
algorithm, but it needs to be balanced with the effort required to implement it, and 
the familiarity of the developers with it. Algorithms are usually design decisions, but 
they can be given as design constraints or even considered functional requirements. 
In many business environments there are regulations that mandate specific algorithms 
or mathematical formulas to be used, and in many scientific applications the goal is to 
test several algorithms, which means that you must use certain algorithms.

1.2  Testing
It is always a good idea to test a program, while it is being defined, developed, and after 
it is completed. This may sound like obvious advice, but it is not always followed. There 
are several kinds of testing, including acceptance testing, which refers to testing done by 
clients, or somebody on their behalf, to make sure the program runs as specified. If this 
testing fails, the client can reject the program. A simple validation test at the beginning 
of the project can be done by showing hand-drawn screens of the “problem solution” to 
the client. This practice solidifies your perception of the problem and the client’s solution 
expectations. The developers run their own internal tests to determine if the program 
works and is correct. These tests are called verification tests. Validation tests determine 
whether the developers are building the correct system for the client, and verification tests 
determine if the system build is correct.

6 Chapter 1  Creating a Program



Although there are many types of testing performed by the development organiza-
tion, the most important kind of verification testing for the individual programmer is unit 
testing—a process followed by a programmer to test each piece or unit of software. When 
writing code, you must also write tests to check each module, function, or method you 
have written. Some methodologies, notably Extreme Programming, go as far as saying 
that programmers should write the test cases before writing the code; see the discussion 
on Extreme Programming in Beck and Andres (2004). Inexperienced programmers often 
do not realize the importance of testing. They write functions or methods that depend 
on other functions or methods that have not been properly tested. When a method fails, 
they do not know which function or method is actually failing.

Another useful distinction is between black-box and white-box testing. In black-box 
testing, the test cases are based only on the requirement specifications, not on the imple-
mentation code. In white-box testing, the test cases can be designed while looking at the 
design and code implementation. While doing unit testing, the programmer has access to 
the implementation but should still perform a mixture of black-box and white-box testing. 
When we discuss implementations for our simple program, we will perform unit testing 
on it. Testing will be discussed more extensively in Chapter 10.

1.3  Estimating Effort
One of the most important aspects of a software project is estimating how much effort it 
involves. The effort estimate is required to produce a cost estimate and a schedule. Before 
producing a complete effort estimate, the requirements must be understood. An interest-
ing exercise illustrates this point.

Try the following exercise:

Estimate how much time, in minutes, it will take you, using your favorite 
language and technology, to write a program that reads lines from one file 
and writes the sorted lines to another file. Assume that you will be writing the 
sort routine yourself and will implement a simple GUI like the one shown in 
Figure 1.21, with two text boxes for providing two file names, and two buttons 
next to each text box. Pressing one of the two buttons displays a File Open 
dialog, like the one shown in Figure 1.22, where the user can navigate the 
computer’s file system and choose a file. Assume that you can work only on this 
one task, with no interruptions. Provide an estimate within 1 minute (in Step 1).

Step 1. 
Estimated ideal total time: _________________

Is the assumption that you will be able to work straight through on this task with no inter-
ruptions realistic? Won’t you need to go to the restroom or drink some water? When can 
you spend the time on this task? If you were asked to do this task as soon as reasonably 
possible, starting right now, can you estimate when you would be finished? Given that 
you start now, estimate when you think you will have this program done to hand over to 
the client. Also give an estimate of the time you will not be on task (e.g., eating, sleeping, 
other courses, etc.) in Step 2.
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Step 2. 
Estimated calendar time started: _________ ended:___________breaks:_____

Now, let’s create a new estimate where you divide the entire program into separate  
developmental tasks, which could be divided into several subtasks, where applicable. 
Your current task is a planning task, which includes a subtask: ESTIMATION. When thinking 
of the requirements for the project, assume you will create a class, called StringSorter, 
with three public methods: Read, Write, and Sort. For the sorting routine, assume that 
your algorithm involves finding the largest element, putting it at the end of the array, 
and then sorting the rest of the array using the same mechanism. Assume you will cre-
ate a method called IndexOfBiggest that returns the index of the biggest element on 
the array. Using the following chart, estimate how much time it will take you to do each 
task (and the GUI) in Step 3.

Step 3. 

Ideal Total Time 	 Calendar Time

Planning

IndexOfBiggest

Sort

Read

Write

GUI

Testing

Total

How close is this estimate to the previous one you did? What kind of formula did you use 
to convert from ideal time to calendar time? What date would you give the client as the 
delivery date?

Now, design and implement your solution while keeping track of the time in Step 4.

Step 4. 

Keeping track of the time you actually spend on each task as well as the interruptions 
you experience is a worthwhile data collection activity. Compare these times with your 
estimates. How high or low did you go? Is there a pattern? How accurate is the total with 
respect to your original estimate?

If you performed the activities in this exercise, chances are that you found the esti-
mate was more accurate after dividing it into subtasks. You will also find that estimates in 
general tend to be somewhat inaccurate, even for well-defined tasks. Project estimation 
and effort estimation is one of the toughest problems in software project management 
and software engineering. This topic will be revisited in detail in Chapter 13. For further 
reading on why individuals should keep track of their development time, see the Personal 
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Software Process (PSP) in Humphrey (1996). Accurate estimation is very hard to achieve. 
Dividing tasks into smaller ones and keeping data about previous tasks and estimates are 
usually helpful beginnings.

It is important that the estimation is done by the people who do the job, which is often 
the programmer. The client also needs to check the estimates for reasonableness. One big 
problem with estimating is that it is conceptually performed during the bid for the job, 
which is before the project is started. In reality a lot of the development tasks and informa-
tion, possibly up to design, is needed in order to be able to provide a good estimate. We 
will talk more about estimating in Chapter 13.

1.4  Implementations
In this section we will discuss several implementations of our sorting program, including 
two ways to implement the sort functionality and several variations of the user interface. 
We will also discuss unit testing for our implementations. Sample code will be provided 
in Java, using JUnit to aid in unit testing.

1.4.1  A Few Pointers on Implementation
Although software engineering tends to focus more on requirements analysis, design, 
and processes rather than implementation, a bad implementation will definitely mean a 
bad program even if all the other pieces are perfect. Although for simple programs almost 
anything will do, following a few simple rules will generally make all your programming 
easier. Here we will discuss only a few language-independent rules, and point you to other 
books in the References and Suggested Readings section at the end of this chapter.

�� The most important rule is to be consistent—especially in your choice of names, capi-
talization, and programming conventions. If you are programming alone, the particular 
choice of conventions is not important as long as you are consistent. You should also 
try to follow the established conventions of the programming language you are using, 
even if it would not otherwise be your choice. This will ensure that you do not introduce 
two conventions. For example, it is established practice in Java to start class names with 
uppercase letters and variable names with lowercase letters. If your name has more 
than one word, use capitalization to signal the word boundaries. This results in names 
such as FileClass and fileVariable. In C, the convention is to use lowercase almost 
exclusively and to separate with an underscore. Thus, when we program in C, we fol-
low the C conventions. The choice of words for common operations is also dictated by 
convention. For example, printing, displaying, showing, or echoing a variable are some 
of the terminologies meaning similar actions. Language conventions also provide hints 
as to default names for variables, preference for shorter or longer names, and other  
issues. Try to be as consistent as possible in your choice, and follow the conventions for 
your language.
�� Choose names carefully. In addition to being consistent in naming, try to make sure names 
for functions and variables are descriptive. If the names are too cumbersome or if a good 
name cannot be easily found, that is usually a sign that there may be a problem in the 
design. A good rule of thumb is to choose long, descriptive names for things that will have 
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