

Frank Tsui
Orlando Karam
Barbara Bernal

All associated with Kennesaw State University
ESSEN

TIA
LS O

F

software
engineering

FOURTH EDITION

World Headquarters
Jones & Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact
Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional
associations, and other qualified organizations. For details and specific discount information, contact the special sales
department at Jones & Bartlett Learning via the above contact information or send an email to specialsales@jblearning.com.

Copyright © 2018 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or
mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permis-
sion from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones
& Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC
and such reference shall not be used for advertising or product endorsement purposes. All trademarks displayed are the trade-
marks of the parties noted herein. Essentials of Software Engineering, Fourth Edition is an independent publication and has not
been authorized, sponsored, or otherwise approved by the owners of the trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in
the activities represented in the images. Any screenshots in this product are for educational and instructive purposes only.
Any individuals and scenarios featured in the case studies throughout this product may be real or fictitious, but are used for
instructional purposes only.

13278-6

Production Credits
VP, Executive Publisher: David D. Cella
Executive Editor: Matt Kane
Acquisitions Editor: Laura Pagluica
Editorial Assistant: Taylor Ferracane
Editorial Assistant: Mary Menzemer
Director of Vendor Management: Amy Rose
Director of Marketing: Andrea DeFronzo
Marketing Manager: Amy Langlais
VP, Manufacturing and Inventory Control: Therese Connell

Project Management and Composition: S4Carlisle Publishing
Services
Cover Design: Michael O’Donnell
Rights & Media Specialist: Merideth Tumasz
Media Development Editor: Shannon Sheehan
Cover Image: © Eladora/Dreamstime.com
Printing and Binding: Edwards Brothers Malloy
Cover Printing: Edwards Brothers Malloy

Library of Congress Cataloging-in-Publication Data
Names: Tsui, Frank F., author. | Karam, Orlando, author. | Bernal, Barbara,
 author.
Title: Essentials of software engineering / Frank Tsui, Orlando Karam,
 Barbara Bernal.
Description: Fourth edition. | Burlington, Massachusetts : Jones & Bartlett
 Learning, [2017] | Includes bibliographical references and index.
Identifiers: LCCN 2016036199 | ISBN 9781284106008
Subjects: LCSH: Software engineering.
Classification: LCC QA76.758 .T78 2014 | DDC 005.1--dc23 LC record available at https://lccn.loc.gov/2016036199

6048
Printed in the United States of America
20 19 18 17 16 10 9 8 7 6 5 4 3 2 1

iii

Contents

Preface  xiii

Chapter 1	 Creating a Program  1
	 1.1	 A Simple Problem  2
	 1.1.1	 Decisions, Decisions  2
	 1.1.2	 Functional Requirements  3
	 1.1.3	 Nonfunctional Requirements  4
	 1.1.4	 Design Constraints  5
	 1.1.5	 Design Decisions  6
	 1.2	 Testing  6
	 1.3	 Estimating Effort  7
	 1.4	 Implementations  9

	 1.4.1	 A Few Pointers on Implementation  9
	 1.4.2	 Basic Design  10
	 1.4.3	 Unit Testing with JUnit  10
	 1.4.4	 Implementation of StringSorter  11
	 1.4.5	 User Interfaces  16
	 1.5	 Summary  20

	 1.6	 Review Questions  20

	 1.7	 Exercises  20
	 1.8	 References and Suggested Readings  21

Chapter 2	 Building a System  23
	 2.1	 Characteristics of Building a System  24

	 2.1.1	 Size and Complexity  24
	 2.1.2	 Technical Considerations of Development and

Support  25
	 2.1.3	 Nontechnical Considerations of Development and

Support  29
	 2.2	 Building a Hypothetical System  30

	 2.2.1	 Requirements of the Payroll System  30
	 2.2.2	 Designing the Payroll System  32
	 2.2.3	 Code and Unit Testing the Payroll System  34
	 2.2.4	 Integration and Functionally Testing the Payroll

System  35
	 2.2.5	 Release of the Payroll System  35
	 2.2.6	 Support and Maintenance  36
	 2.3	 Coordination Efforts  37

	 2.3.1	 Process  37
	 2.3.2	 Product  38
	 2.3.3	 People  38
	 2.4	 Summary  38
	 2.5	 Review Questions  39
	 2.6	 Exercises  39
	 2.7	 References and Suggested Readings  39

Chapter 3	 Engineering of Software  41
	 3.1	 Examples and Characteristics of Software Failures  42

	 3.1.1	 Project Failures  42
	 3.1.2	 Software Product Failures  43
	 3.1.3	 Coordination and Other Concerns  44
	 3.2	 Software Engineering  45

	 3.2.1	 What Is Software Engineering?  45
	 3.2.2	 Definitions of Software Engineering  45
	 3.2.3	 Relevancy of Software Engineering and Software  46
	 3.3	 Software Engineering Profession and Ethics  47

iv Contents

	 3.3.1	 Software Engineering Code of Ethics  47
	 3.3.2	 Professional Behavior  48
	 3.4	 Principles of Software Engineering  49

	 3.4.1	 Davis’s Early Principles of
Software Engineering  50

	 3.4.2	 Royce’s More Modern Principles  51
	 3.4.3	 Wasserman’s Fundamental Software Engineering

Concepts  52
	 3.5	 Summary  53
	 3.6	 Review Questions  54
	 3.7	 Exercises  54
	 3.8	 References and Suggested Readings  54

Chapter 4	 Software Process Models  57
	 4.1	 Software Processes  58

	 4.1.1	 Goal of Software Process Models  58
	 4.1.2	 The “Simplest” Process Model  58
	 4.2	 Traditional Process Models  59

	 4.2.1	 Waterfall Model  59
	 4.2.2	 Chief Programmer Team Approach  61
	 4.2.3	 Incremental Model  61
	 4.2.4	 Spiral Model  63
	 4.3	 A More Modern Process  65

	 4.3.1	 General Foundations of Rational
Unified Process Framework  65

	 4.3.2	 The Phases of RUP  66
	 4.4	 Entry and Exit Criteria  68

	 4.4.1	 Entry Criteria  69
	 4.4.2	 Exit Criteria  69
	 4.5	 Process Assessment Models  70

	 4.5.1	 SEI’s Capability Maturity Model  70
	 4.5.2	 SEI’s Capability Maturity Model Integrated  72
	 4.6	 Process Definition and Communication  78
	 4.7	 Summary  79
	 4.8	 Review Questions  80
	 4.9	 Exercises  80

	 4.10	 References and Suggested Readings  81

Contents v

Chapter 5	 New and Emerging Process Methodologies  83
	 5.1	 What Are Agile Processes?  84
	 5.2	 Why Agile Processes?  85
	 5.3	 Some Process Methodologies  86

	 5.3.1	 Extreme Programming (XP)  86
	 5.3.2	 The Crystal Family of Methodologies  90
	 5.3.3	 The Unified Process as Agile  94
	 5.3.4	 Scrum  94
	 5.3.5	 Kanban Method: A New Addition to Agile  96
	 5.3.6	 Open Source Software Development  97
	 5.3.7	 Summary of Processes  98
	 5.4	 Choosing a Process  100

	 5.4.1	 Projects and Environments Better Suited
for Each Kind of Process  100

	 5.4.2	 Main Risks and Disadvantages of Agile Processes  101
	 5.4.3	 Main Advantages of Agile Processes  101
	 5.5	 Summary  102
	 5.6	 Review Questions  102
	 5.7	 Exercises  102
	 5.8	 References and Suggested Readings  103

Chapter 6	 Requirements Engineering  105
	 6.1	 Requirements Processing  106

	 6.1.1	 Preparing for Requirements Processing  106
	 6.1.2	 Requirements Engineering Process  107
	 6.2	 Requirements Elicitation and Gathering  109

	 6.2.1	 Eliciting High-Level Requirements  110
	 6.2.2	 Eliciting Detailed Requirements  112
	 6.3	 Requirements Analysis  114

	 6.3.1	 Requirements Analysis and Clustering
by Business Flow  114

	 6.3.2	 Requirements Analysis and Clustering
with Object-Oriented Use Cases  116

	 6.3.3	 Requirements Analysis and Clustering by
Viewpoint-Oriented Requirements Definition  118

	 6.3.4	 Requirements Analysis and Prioritization  119
	 6.3.5	 Requirements Traceability  121

vi Contents

	 6.4	 Requirements Definition, Prototyping, and Reviews  122
	 6.5	 Requirements Specification and Requirements

Agreement  126
	 6.6	 Summary  127
	 6.7	 Review Questions  127
	 6.8	 Exercises  128
	 6.9	 References and Suggested Readings  129

Chapter 7	 Design: Architecture and Methodology  131
	 7.1	 Introduction to Design  132
	 7.2	 Architectural Design  133

	 7.2.1	 What Is Software Architecture?  133
	 7.2.2	 Views and Viewpoints  133
	 7.2.3	 Meta-Architectural Knowledge: Styles,

Patterns, Tactics, and Reference Architectures  135
	 7.2.4 A Network-based Web Reference

Architecture—REST  141
	 7.3	 Detailed Design  142

	 7.3.1	 Functional Decomposition  143
	 7.3.2	 Relational Database Design  144
	 7.3.3	 Designing for Big Data  149
	 7.3.4	 Object-Oriented Design and UML  151
	 7.3.5	 User-Interface Design  155
	 7.3.6	 Some Further Design Concerns  162
	 7.4	 HTML-Script-SQL Design Example  162
	 7.5	 Summary  165
	 7.6	 Review Questions  165
	 7.7	 Exercises  166
	 7.8	 References and Suggested Readings  166

Chapter 8	 Design Characteristics and Metrics  169
	 8.1	 Characterizing Design  170
	 8.2	 Some Legacy Characterizations of Design Attributes  170

	 8.2.1	 Halstead Complexity Metric  170
	 8.2.2	 McCabe’s Cyclomatic Complexity  171
	 8.2.3	 Henry-Kafura Information Flow  173
	 8.2.4	 A Higher-Level Complexity Measure  174

Contents vii

	 8.3	 “Good” Design Attributes  175
	 8.3.1	 Cohesion  175
	 8.3.2	 Coupling  178
	 8.4	 OO Design Metrics  181

	 8.4.1	 Aspect-Oriented Programming  182
	 8.4.2	 The Law of Demeter  183
	 8.5	 User-Interface Design  184

	 8.5.1	 Good UI Characteristics  184
	 8.5.2	 Usability Evaluation and Testing  185
	 8.6	 Summary  186
	 8.7	 Review Questions  186
	 8.8	 Exercises  187
	 8.9	 References and Suggested Readings  188

Chapter 9	 Implementation  191
	 9.1	 Introduction to Implementation  192
	 9.2	 Characteristics of a Good Implementation  192

	 9.2.1	 Programming Style and Coding Guidelines  193
	 9.2.2	 Comments  196
	 9.3	 Implementation Practices  197

	 9.3.1	 Debugging  197
	 9.3.2	 Assertions and Defensive Programming  199
	 9.3.3	 Performance Optimization  199
	 9.3.4	 Refactoring  200
	 9.3.5	 Code Reuse  201
	 9.4	 Developing for the Cloud  202

	 9.4.1	 Infrastructure as a Service  202
	 9.4.2	 Platform as a Service  203
	 9.4.3	 Cloud Application Services  203
	 9.4.4	 Cloud Services for Developers  204
	 9.4.5	 Advantages and Disadvantages of the Cloud  205
	 9.5	 Summary  205
	 9.6	 Review Questions  206
	 9.7	 Exercises  206
	 9.8	 References and Suggested Readings  206

viii Contents

Chapter 10	 Testing and Quality Assurance  209
	 10.1	 Introduction to Testing and Quality Assurance  210
	 10.2	 Testing  212

	 10.2.1	 The Purposes of Testing  212
	 10.3	 Testing Techniques  213

	 10.3.1	 Equivalence-Class Partitioning  215
	 10.3.2	 Boundary Value Analysis  217
	 10.3.3	 Path Analysis  218
	 10.3.4	 Combinations of Conditions  222
	 10.3.5	 Automated Unit Testing and Test-Driven

  Development  223
	 10.3.6	 An Example of Test-Driven Development  224
	 10.4	 When to Stop Testing  228
	 10.5	 Inspections and Reviews  229
	 10.6	 Formal Methods  231
	 10.7	 Static Analysis  232
	 10.8	 Summary  233
	 10.9	 Review Questions  234
	 10.10	Exercises  235
	 10.11	References and Suggested Readings  235

Chapter 11	 �Configuration Management, Integration,
and Builds  237

	 11.1	 Software Configuration Management  238
	 11.2	 Policy, Process, and Artifacts  238

	 11.2.1	 Business Policy Impact on Configuration
  Management  241

	 11.2.2	 Process Influence on Configuration
  Management  241

	 11.3	 Configuration Management Framework  243
	 11.3.1	 Naming Model  243
	 11.3.2	 Storage and Access Model  245
	 11.4	 Build and Integration and Build  247
	 11.5	 Tools for Configuration Management  248
	 11.6	 Managing the Configuration Management

Framework  250

Contents ix

	 11.7	 Summary  251
	 11.8	 Review Questions  252
	 11.9	 Exercises  252
	 11.10	References and Suggested Readings  253

Chapter 12	 Software Support and Maintenance  255
	 12.1	 Customer Support  256

	 12.1.1	 User Problem Arrival Rate  256
	 12.1.2	 Customer Interface and Call Management  258
	 12.1.3	 Technical Problem/Fix  260
	 12.1.4	 Fix Delivery and Fix Installs  262
	 12.2	 Product Maintenance Updates and Release Cycles  263
	 12.3	 Change Control  265
	 12.4	 Summary  267
	 12.5	 Review Questions  267
	 12.6	 Exercises  267
	 12.7	 References and Suggested Readings  268

Chapter 13	 Software Project Management  269
	 13.1	 Project Management  270

	 13.1.1	 The Need for Project Management  270
	 13.1.2	 The Project Management Process  270
	 13.1.3	 The Planning Phase of Project Management  271
	 13.1.4	 The Organizing Phase of Project Management  274
	 13.1.5	 The Monitoring Phase of Project Management  275
	 13.1.6	 The Adjusting Phase of Project Management  277
	 13.2	 Some Project Management Techniques  279

	 13.2.1	 Project Effort Estimation  279
	 13.2.2	 Work Breakdown Structure  286
	 13.2.3	 Project Status Tracking with Earned Value  289
	 13.2.4	 Measuring Project Properties and GQM  291
	 13.3	 Summary  293
	 13.4	 Review Questions  294
	 13.5	 Exercises  294
	 13.6	 References and Suggested Readings  296

x Contents

Chapter 14	 Epilogue and Some Contemporary Issues  299
	 14.1	 Security and Software Engineering  301
	 14.2	 Reverse Engineering and Software Obfuscation  301
	 14.3	 Software Validation and Verification Methodologies

and Tools  302
	 14.4	 References and Suggested Readings  304

Appendix A  307
		 Essential Software Development Plan (SDP)  307

Appendix B  309
		 Essential Software Requirements Specifications (SRS)  309
		 Example 1: Essential SRS—Descriptive  309
		 Example 2: Essential SRS—Object Oriented  311
		 Example 3: Essential SRS—IEEE Standard  312
		 Example 4: Essential SRS—Narrative Approach  313

Appendix C  315
		 Essential Software Design  315
		 Example 1: Essential Software Design—UML  315
		 Example 2: Essential Software

Design—Structural  316

Appendix D  319
		 Essential Test Plan  319

Glossary  321

Index  325

Contents xi

xiii

Preface

Essentials of Software Engineering was born from our experiences in teaching
introductory material on software engineering. Although there are many books
on this topic available in the market, few serve the purpose of introducing only
the core material for a 1-semester course that meets approximately 3 hours
a week for 16 weeks. With the proliferation of small web applications, many new
information technology personnel have entered the field of software engineer-
ing without fully understanding what it entails. This book is intended to serve
both new students with limited experience as well as experienced information
technology professionals who are contemplating a new career in the software
engineering discipline. The complete life cycle of a software system is covered
in this book, from inception to release and through support.

The content of this book has also been shaped by our personal experiences
and backgrounds—one author has more than 25 years in building, supporting,
and managing large and complex mission-critical software with companies such
as IBM, Blue Cross Blue Shield, MARCAM, and RCA; another author has experi-
ence involving extensive expertise in constructing smaller software with Agile
methods at companies such as Microsoft and Amazon; and the third author is
bilingual and has broad software engineering teaching experiences with both
U.S. college students and non-U.S. Spanish-speaking students.

Although new ideas and technology will continue to emerge and some
of the principles introduced in this book may have to be updated, we believe
that the underlying and fundamental concepts we present here will remain.

Preface to the Fourth Edition
Since the publication of the third edition, the computing industry has moved faster toward
service applications and social media. While the software engineering fundamentals have
stayed relatively stable, we decided to make a few modifications to reflect some of the
movements in software engineering, including the enhancements of teaching aids to this
book. It is our goal to continue keeping the content of the book concise enough to be
taught in a 16-week, 1-semester course.

The following is a list of major enhancements made for the fourth edition.

�	Discussion on kanban methodology in Chapter 5
�	REST distributed processing architecture in Chapter 7
�	Data design, analysis and “big data” in Chapter 7
�	Code reuse in Chapter 9
�	Cloud computing in Chapter 9
�	Sample team projects available online for students and instructors
�	Updated and enhanced instructor resources

In addition, we have made small modifications to some sentences throughout the book
to improve the expression, emphasis, and comprehension. We have also received input
from those who used our first, second, and third editions of the book from different uni-
versities and have corrected the grammatical and spelling errors. Any remaining error
is totally ours.

The first, second, and third editions of this book have been used by numerous
colleges and universities, and we thank them for their patience and input. We have
learned a lot in the process. We hope the fourth edition will prove to be a better one
for all future readers.

Organization of the Book
Chapters 1 and 2 demonstrate the difference between a small programming project and
the effort required to construct a mission-critical software system. We purposely took two
chapters to demonstrate this concept, highlighting the difference between a single-person
“garage” operation and a team project required to construct a large “professional” system.
The discussion in these two chapters delineates the rationale for studying and under-
standing software engineering. Chapter 3 is the first place where software engineering is
discussed more formally. Included in this chapter is an introduction to the profession of
software engineering and its code of ethics.

The traditional topics of software processes, process models, and methodologies are
covered in Chapters 4 and 5. Reflecting the vast amount of progress made in this area, these
chapters explain in extensive detail how to evaluate the processes through the Capability
Maturity Models from the Software Engineering Institute (SEI).

Chapters 6, 7, 9, 10, and 11 cover the sequence of development activities from require-
ments through product release at a macro level. Chapter 7 includes an expanded UI design
discussion with an example of HTML-Script-SQL design and implementation. Chapter 8,

xiv Preface

following the chapter on software design, steps back and discusses design characteristics
and metrics utilized in evaluating high-level and detail designs. Chapter 11 discusses not
only product release, but the general concept of configuration management.

Chapter 12 explores the support and maintenance activities related to a software sys-
tem after it is released to customers and users. Topics covered include call management,
problem fixes, and feature releases. The need for configuration management is further
emphasized in this chapter. Chapter 13 summarizes the phases of project management,
along with some specific project planning and monitoring techniques. It is only a summary,
and some topics, such as team building and leadership qualities, are not included. The
software project management process is contrasted from the development and support
processes. Chapter 14 concludes the book and provides a view of the current issues within
software engineering and the future topics in our field.

The appendices give readers and students insight into possible results from major
activities in software development with the “essential samples” for a Team Plan, Software
Development Plan, Requirements Specification, Design Plan, and Test Plan. An often asked
question is what a requirements document or a test plan should look like. To help answer
this question and provide a starting point, we have included sample formats of possible
documents resulting from the four activities of Planning, Requirements, Design, and Test
Plan. These are provided as follows:

�	Appendix A: Essential Software Development Plan (SDP)
�	Appendix B: Essential Software Requirements Specifications (SRS)
�	Example 1: Essential SRS—Descriptive
�	Example 2: Essential SRS—Object Oriented
�	Example 3: Essential SRS—IEEE Standard
�	Example 4: Essential SRS— Narrative Approach

�	Appendix C: Essential Software Design
�	Example 1: Essential Software Design—UML
�	Example 2: Essential Software Design—Structural

�	Appendix D: Essential Test Plan

Many times in the development of team projects by novice software engineers there is a
need for specific direction on how to document the process. The four appendices were
developed to give the reader concrete examples of the possible essential outlines. Each
of the appendices gives an outline with explanations. This provides the instructor with
concrete material to supplement class activities, team project assignments, and/or inde-
pendent work.

The topical coverage in this book reflects those emphasized by the IEEE Computer
Society–sponsored Software Engineering Body of Knowledge (SWEBOK) and by the Soft-
ware Engineering 2004 Curriculum Guidelines for Undergraduate Degree Program in Software
Engineering. The one topic that is not highlighted but is discussed throughout the book
concerns quality—a topic that needs to be addressed and integrated into all activities.
It is not just a concern of the testers. Quality is discussed in multiple chapters to reflect its
broad implications and cross activities.

Preface xv

Suggested Teaching Plan
All the chapters in this book can be covered within 1 semester. However, some instructors
may prefer a different emphasis:
�	Those who want to focus on direct development activities should spend more time on

Chapters 6 through 11.
�	Those who want to focus more on indirect and general activities should spend more

time on Chapters 1, 12, and 13.
It should be pointed out that both the direct development and the indirect support

activities are important. The combined set forms the software engineering discipline.
There are two sets of questions at the end of each chapter. For the Review Questions,

students can find answers directly in the chapter. The Exercises are meant to be used for
potential class discussion, homework, or small projects.

Supplements
Slides in PowerPoint format, Answers to End-of-Chapter Exercises, Sourcecode, and sample
Test Questions are available for free instructor download. To request access, please visit
go.jblearning.com/Tsui4e or contact your account representative.

Acknowledgments
We would first like to thank our families, especially our wives, Lina Colli and Teresa Tsui. They
provided constant encouragement and understanding when we spent more time with the
manuscript than with them. Our children—Colleen and Nicholas; Orlando and Michelle;
and Victoria, Liz, and Alex—enthusiastically supported our efforts as well.

In addition, we would like to thank the reviewers who have improved the book in many
ways. We would like to specifically thank the following individuals for work on our third
edition:

�	Brent Auernheimer, California State University, Fresno
�	Ayad Boudiab, Georgia Perimeter College
�	Kai Chang, Auburn University
�	David Gustafson, Kansas State University
�	Theresa Jefferson, George Washington University
�	Dar-Biau Liu, California State University, Long Beach
�	Bruce Logan, Lesley University
�	Jeanna Matthews, Clarkson University
�	Michael Oudshoorn, Montana State University
�	Frank Ackerman, Montana Tech
�	Mark Hall, Hastings College
�	Dr. Dimitris Papamichail, The College of New Jersey
�	Dr. Jody Paul, Metro State Denver
�	Dr. David A. Cook, Stephen F. Austin State University
�	Dr. Reza Eftekari, George Washington University, University of Maryland at College Park
�	Dr. Joe Hoffert, Indiana Wesleyan University

xvi Preface

�	Dr. Sofya Poger, Felician College
�	Dr. Stephen Hughes, Coe College
�	Ian Cottingham, Jeffrey S. Raikes School at The University of Nebraska, Lincoln
�	Dr. John Dalbey, California Polytechnic State University
�	Dr. Michael Murphy, Concordia University Texas
�	Dr. Edward G. Nava, University of New Mexico
�	Dr. Yenumula B. Reddy, Grambling State University
�	Alan C. Verbit, Delaware County Community College
�	Dr. David Burris, Sam Houston State University

We would also like to thank the following individuals for their work on our fourth edition:

�	Savador Almanza-Garcia, Vector CANtech, Inc.
�	Dr. Ronand Finkbine, Indiana University Southeast
�	Dr. Christopher Fox, James Madison University
�	Paul G. Garland, Johns Hopkins University
�	Dr. Emily Navarro, University of California, Irvine
�	Benjamin Sweet, Lawrence Technological University
�	Ben Geisler, University of Wisconsin, Green Bay

We continue to appreciate the help from Taylor Ferracane, Laura Pagluica, Bharathi Sanjeev,
Amy Rose, Mary Menzemer, and others at Jones & Bartlett Learning. Any remaining error
is solely the mistake of the authors.

	 —Frank Tsui
	 —Orlando Karam
	 —Barbara Bernal

Preface xvii

OBJECTIVES

1

CHAPTER 1

Creating a Program

�� Analyze some of the issues involved in producing a simple program:
�� Requirements (functional, nonfunctional)
�� Design constraints and design decisions
�� Testing
�� Effort estimation
�� Implementation details

�� Understand the activities involved in writing even a simple program.
�� Preview many additional software engineering topics found in the later
chapters.

1.1  A Simple Problem
In this chapter we will analyze the tasks involved in writing a relatively simple program.
This will serve as a contrast to what is involved in developing a large system, which is
described in Chapter 2.

Assume that you have been given the following simple problem: “Given a collection of
lines of text (strings) stored in a file, sort them in alphabetical order, and write them to an-
other file.” This is probably one of the simplest problems you will be involved with. You have
probably done similar assignments for some of your introduction to programming classes.

1.1.1  Decisions, Decisions
A problem statement such as the one mentioned in the above simple problem does not
completely specify the problem. You need to clarify the requirements in order to produce
a program that better satisfies the real problem. You need to understand all the program
requirements and the design constraints imposed by the client on the design, and you

need to make important technical decisions. A complete problem
statement would include the requirements, which state and qualify
what the program does, and the design constraints, which depict
the ways in which you can design and implement it.

The most important thing to realize is that the word requirements
is not used as it is in colloquial English. In many business transactions,
a requirement is something that absolutely must happen. However,

in software engineering many items are negotiable. Given that every requirement will
have a cost, the clients may decide that they do not really need it after they understand
the related cost. Requirements are often grouped into those that are “needed” and those
that are “nice to have.”

It is also useful to distinguish between functional requirements—what the program
does—and nonfunctional requirements—the manner in which the program must be-
have. In a way, a function is similar to that of a direct and indirect object in grammar. Thus
the functional requirements for our problem will describe what it does: sort a file (with
all the detail required); the nonfunctional requirements will describe items such as per-
formance, usability, and maintainability. Functional requirements tend to have a Boolean
measurement where the requirement is either satisfied or not satisfied, but nonfunctional

requirements tend to apply to things measured on a linear scale
where the measurements can vary much more. Performance and
maintainability requirements, as examples, may be measured in
degrees of satisfaction.

Nonfunctional requirements are informally referred as the “ilities,”
because the words describing most of them will end in -ility. Some

of the typical characteristics defined as nonfunctional requirements are performance,
modifiability, usability, configurability, reliability, availability, security, and scalability.

Besides requirements, you will also be given design constraints, such as the choice of
programming language, platforms the system runs on, and other systems it interfaces with.
These design constraints are sometimes considered nonfunctional requirements. This is
not a very crisp or easy-to-define distinction (similar to where requirement analysis ends

Program requirements  Statements that
define and qualify what the program needs
to do.
Design constraints  Statements that con-
strain the ways in which the software can be
designed and implemented.

Functional requirements  What a program
needs to do.
Nonfunctional requirements  The manner
in which the functional requirements need to
be achieved.

2 Chapter 1  Creating a Program

and design starts); and in borderline cases, it is defined mainly by consensus. Most devel-
opers will include usability as a nonfunctional requirement, and the choice of a specific
user interface such as graphical user interface (GUI) or web-based as a design constraint.
However, it can also be defined as a functional requirement as follows: “the program dis-
plays a dialog box 60 by 80 pixels, and then . . .”

Requirements are established by the client, with help from the software engineer, while
the technical decisions are often made by the software engineer without much client in-
put. Oftentimes, some of the technical decisions such as which programming languages
or tools to use can be given as requirements because the program needs to interoperate
with other programs or the client organization has expertise or strategic investments in
particular technologies.

In the following pages we will illustrate the various issues that software engineers
confront, even for simple programs. We will categorize these decisions into functional and
nonfunctional requirements, design constraints, and design decisions. But do keep in mind
that other software engineers may put some of these issues into a different category. We
will use the simple sorting problem presented previously as an example.

1.1.2  Functional Requirements
We will have to consider several aspects of the problem and ask many questions prior to
designing and programming the solution. The following is an informal summary of the
thinking process involved with functional requirements:

�� Input formats: What is the format for the input data? How should data be stored? What
is a character? In our case, we need to define what separates the lines on the file. This is
especially critical because several different platforms may use different separator characters.
Usually some combination of new-line and carriage return may be considered. In order
to know exactly where the boundaries are, we also need to know the input character
set. The most common representation uses 1 byte per character, which is enough for
English and most Latin-derived languages. But some representations, such as Chinese
or Arabic, require 2 bytes per character because there are more than 256 characters
involved. Others require a combination of the two types. With the combination of both
single- and double-byte character representations, there is usually a need for an escape
character to allow the change of mode from single byte to double byte or vice versa.
For our sorting problem, we will assume the simple situation of 1 byte per character.
�� Sorting: Although it seems to be a well-defined problem, there are many slightly and
not so slightly different meanings for sorting. For starters—and of course, assuming
that we have English characters only—do we sort in ascending or descending order?
What do we do with nonalphabetic characters? Do numbers go before or after letters
in the order? How about lowercase and uppercase characters? To simplify our problem,
we define sorting among characters as being in numerical order, and the sorting of the
file to be in ascending order.
�� Special cases, boundaries, and error conditions: Are there any special cases? How should
we handle boundary cases such as empty lines and empty files? How should different
error conditions be handled? It is common, although not good practice, to not have
all of these requirements completely specified until the detailed design or even the

1.1  A Simple Problem 3

implementation stages. For our program, we do not treat empty lines in any special
manner except to specify that when the input file is empty the output file should be
created but empty. We do not specify any special error-handling mechanism as long as
all errors are signaled to the user and the input file is not corrupted in any way.

1.1.3  Nonfunctional Requirements
The thinking process involved in nonfunctional requirements can be informally summa-
rized as follows:

�� Performance requirements: Although it is not as important as most people may think,
performance is always an issue. The program needs to finish most or all inputs within a
certain amount of time. For our sorting problem, we define the performance requirements
as taking less than 1 minute to sort a file of 100 lines of 100 characters each.
�� Real-time requirements: When a program needs to perform in real-time, which means it
must complete the processing within a given amount of time, performance is an issue.
The variability of the running time is also a big issue. We may need to choose an algo-
rithm with a less than average performance, if it has a better worst-case performance.
For example, Quick Sort is regarded as one of the fastest sorting algorithms; however,
for some inputs, it can have poor performance. In algorithmic terms, its expected run-
ning time is on the order of n log(n), but its worst-case performance is on the order of
n squared. If you have real-time requirements in which the average case is acceptable
but the worst case is not, then you may want to choose an algorithm with less variability,
such as Heap Sort or Merge Sort. Run-time performance analysis is discussed further
in Main and Savitch (2010).
�� Modifiability requirements: Before writing a program, it is important to know the life
expectancy of the program and whether there is any plan to modify the program. If the
program is to be used only once, then modifiability is not a big issue. On the other hand,
if it is going to be used for 10 years or more, then we need to worry about making it
easy to maintain and modify. Surely, the requirements will change during that 10-year
period. If we know that there are plans to extend the program in certain ways, or that
the requirements will change in specific ways, then we should prepare the program for
those modifications as the program is designed and implemented. Notice that even if
the modifiability requirements are low, this is not a license to write bad code, because
we still need to be able to understand the program for debugging purposes. For our
sorting example, consider how we might design and implement the solution if we know
that down the road the requirement may change from descending to ascending order
or may change to include both ascending and descending orders.
�� Security requirements: The client organization and the developers of the software need
to agree on security definitions derived from the client’s business application goals,
potential threats to project assets, and management controls to protect from loss,
inaccuracy, alteration, unavailability, or misuse of the data and resources. Security
might be functional or nonfunctional. For example, a software developer may argue
that a system must protect against denial-of-service attacks in order to fulfill its mis-
sion. Security quality requirements engineering (SQUARE) is discussed in Mead and
Stehney (2005).

4 Chapter 1  Creating a Program

�� Usability requirements: The end users for the program have specific background, educa-
tion, experience, needs, and interaction styles that are considered in the development
of the software. The user, product, and environmental characteristics of the program
are gathered and studied for the design of the user interface. This nonfunctional
requirement is centered in the interaction between the program and the end user.
This interaction is rated by the end user with regards to its effectiveness, efficiency,
and success. Evaluation of usability requirements is not directly measurable since it
is qualified by the usability attributes that are reported by the end users in specific
usability testing.

1.1.4  Design Constraints
The thinking process related to design constraints can be summarized as follows:

�� User interface: What kind of user interface should the program have? Should it be
a command-line interface (CLI) or a graphical user interface (GUI)? Should we use a
web-based interface? For the sorting problem, a web-based
interface doesn’t sound appropriate because users would need
to upload the file and download the sorted one. Although GUIs
have become the norm over the past decade or so, a CLI can be
just as appropriate for our sorting problem, especially because it would make it easier
to invoke inside a script, allowing for automation of manual processes and reuse of
this program as a module for future ones. This is one of those design considerations
that also involves user interface. In Section 1.4, we will create several implementations,
some CLI based and some GUI based. Chapter 7 also discusses user-interface design
in more detail.
�� Typical and maximum input sizes: Depending on the typical input sizes, we may want to
spend different amounts of time on algorithms and performance optimizations. Also,
certain kinds of inputs are particularly good or bad for certain algorithms; for example,
inputs that are almost sorted make the naive Quick Sort implementations take more
time. Note that you will sometimes be given inaccurate estimates, but even ballpark
figures can help anticipate problems or guide you toward an appropriate algorithm. In
this example, if you have small input sizes, you can use almost any sorting algorithm.
Thus you should choose the simplest one to implement. If you have larger inputs but
they can still fit into the random access memory (RAM), you need to use an efficient
algorithm. If the input does not fit on RAM, then you need to choose a specialized
algorithm for on-disk sorting.
�� Platforms: On which platforms does the program need to run? This is an important busi-
ness decision that may include architecture, operating system, and available libraries
and will almost always be expressed in the requirements. Keep in mind that, although
cross-platform development has become easier and there are many languages designed
to be portable across platforms, not all the libraries will be available in all platforms.
There is always an extra cost on explicitly supporting a new platform. On the other
hand, good programming practices help achieve portability, even when not needed.
A little extra consideration when designing and implementing a program can minimize
the potentially extensive work required to port to a new platform. It is good practice to

User interface  What the user sees, feels
and hears from the system.

1.1  A Simple Problem 5

perform a quick cost-benefit analysis on whether to support additional platforms and
to use technologies and programming practices that minimize portability pains, even
when the need for supporting new platforms is not anticipated.
�� Schedule requirements: The final deadline for completing a project comes from the client,
with input from the technical side on feasibility and cost. For example, a dialogue on
schedule might take the following form: Your client may make a request such as “I need
it by next month.” You respond by saying, “Well, that will cost you twice as much than if
you wait two months” or “That just can’t be done. It usually takes three months. We can
push it to two, but no less.” The client may agree to this, or could also say, “If it’s not done
by next month, then it is not useful,” and cancel the project.

1.1.5  Design Decisions
The steps and thoughts related to design decisions for the sorting problem can be sum-
marized as follows:

�� Programming language: Typically this will be a technical design decision, although it is
not uncommon to be given as a design constraint. The type of programming needed, the
performance and portability requirements, and the technical expertise of the developers
often heavily influence the choice of the programming language.
�� Algorithms: When implementing systems, there are usually several pieces that can be
influenced by the choice of algorithms. In our example, of course, there are a variety of
algorithms we can choose from to sort a collection of objects. The language used and the
libraries available will influence the choice of algorithms. For example, to sort, the easiest
solution would be to use a standard facility provided by the programming language
rather than to implement your own. Thus, use whatever algorithm that implementation
chooses. Performance will usually be the most important influence in the choice of an
algorithm, but it needs to be balanced with the effort required to implement it, and
the familiarity of the developers with it. Algorithms are usually design decisions, but
they can be given as design constraints or even considered functional requirements.
In many business environments there are regulations that mandate specific algorithms
or mathematical formulas to be used, and in many scientific applications the goal is to
test several algorithms, which means that you must use certain algorithms.

1.2  Testing
It is always a good idea to test a program, while it is being defined, developed, and after
it is completed. This may sound like obvious advice, but it is not always followed. There
are several kinds of testing, including acceptance testing, which refers to testing done by
clients, or somebody on their behalf, to make sure the program runs as specified. If this
testing fails, the client can reject the program. A simple validation test at the beginning
of the project can be done by showing hand-drawn screens of the “problem solution” to
the client. This practice solidifies your perception of the problem and the client’s solution
expectations. The developers run their own internal tests to determine if the program
works and is correct. These tests are called verification tests. Validation tests determine
whether the developers are building the correct system for the client, and verification tests
determine if the system build is correct.

6 Chapter 1  Creating a Program

Although there are many types of testing performed by the development organiza-
tion, the most important kind of verification testing for the individual programmer is unit
testing—a process followed by a programmer to test each piece or unit of software. When
writing code, you must also write tests to check each module, function, or method you
have written. Some methodologies, notably Extreme Programming, go as far as saying
that programmers should write the test cases before writing the code; see the discussion
on Extreme Programming in Beck and Andres (2004). Inexperienced programmers often
do not realize the importance of testing. They write functions or methods that depend
on other functions or methods that have not been properly tested. When a method fails,
they do not know which function or method is actually failing.

Another useful distinction is between black-box and white-box testing. In black-box
testing, the test cases are based only on the requirement specifications, not on the imple-
mentation code. In white-box testing, the test cases can be designed while looking at the
design and code implementation. While doing unit testing, the programmer has access to
the implementation but should still perform a mixture of black-box and white-box testing.
When we discuss implementations for our simple program, we will perform unit testing
on it. Testing will be discussed more extensively in Chapter 10.

1.3  Estimating Effort
One of the most important aspects of a software project is estimating how much effort it
involves. The effort estimate is required to produce a cost estimate and a schedule. Before
producing a complete effort estimate, the requirements must be understood. An interest-
ing exercise illustrates this point.

Try the following exercise:

Estimate how much time, in minutes, it will take you, using your favorite
language and technology, to write a program that reads lines from one file
and writes the sorted lines to another file. Assume that you will be writing the
sort routine yourself and will implement a simple GUI like the one shown in
Figure 1.21, with two text boxes for providing two file names, and two buttons
next to each text box. Pressing one of the two buttons displays a File Open
dialog, like the one shown in Figure 1.22, where the user can navigate the
computer’s file system and choose a file. Assume that you can work only on this
one task, with no interruptions. Provide an estimate within 1 minute (in Step 1).

Step 1. 
Estimated ideal total time: _________________

Is the assumption that you will be able to work straight through on this task with no inter-
ruptions realistic? Won’t you need to go to the restroom or drink some water? When can
you spend the time on this task? If you were asked to do this task as soon as reasonably
possible, starting right now, can you estimate when you would be finished? Given that
you start now, estimate when you think you will have this program done to hand over to
the client. Also give an estimate of the time you will not be on task (e.g., eating, sleeping,
other courses, etc.) in Step 2.

1.3  Estimating Effort 7

Step 2. 
Estimated calendar time started: _________ ended:___________breaks:_____

Now, let’s create a new estimate where you divide the entire program into separate
developmental tasks, which could be divided into several subtasks, where applicable.
Your current task is a planning task, which includes a subtask: ESTIMATION. When thinking
of the requirements for the project, assume you will create a class, called StringSorter,
with three public methods: Read, Write, and Sort. For the sorting routine, assume that
your algorithm involves finding the largest element, putting it at the end of the array,
and then sorting the rest of the array using the same mechanism. Assume you will cre-
ate a method called IndexOfBiggest that returns the index of the biggest element on
the array. Using the following chart, estimate how much time it will take you to do each
task (and the GUI) in Step 3.

Step 3. 

Ideal Total Time 	 Calendar Time

Planning

IndexOfBiggest

Sort

Read

Write

GUI

Testing

Total

How close is this estimate to the previous one you did? What kind of formula did you use
to convert from ideal time to calendar time? What date would you give the client as the
delivery date?

Now, design and implement your solution while keeping track of the time in Step 4.

Step 4. 

Keeping track of the time you actually spend on each task as well as the interruptions
you experience is a worthwhile data collection activity. Compare these times with your
estimates. How high or low did you go? Is there a pattern? How accurate is the total with
respect to your original estimate?

If you performed the activities in this exercise, chances are that you found the esti-
mate was more accurate after dividing it into subtasks. You will also find that estimates in
general tend to be somewhat inaccurate, even for well-defined tasks. Project estimation
and effort estimation is one of the toughest problems in software project management
and software engineering. This topic will be revisited in detail in Chapter 13. For further
reading on why individuals should keep track of their development time, see the Personal

8 Chapter 1  Creating a Program

Software Process (PSP) in Humphrey (1996). Accurate estimation is very hard to achieve.
Dividing tasks into smaller ones and keeping data about previous tasks and estimates are
usually helpful beginnings.

It is important that the estimation is done by the people who do the job, which is often
the programmer. The client also needs to check the estimates for reasonableness. One big
problem with estimating is that it is conceptually performed during the bid for the job,
which is before the project is started. In reality a lot of the development tasks and informa-
tion, possibly up to design, is needed in order to be able to provide a good estimate. We
will talk more about estimating in Chapter 13.

1.4  Implementations
In this section we will discuss several implementations of our sorting program, including
two ways to implement the sort functionality and several variations of the user interface.
We will also discuss unit testing for our implementations. Sample code will be provided
in Java, using JUnit to aid in unit testing.

1.4.1  A Few Pointers on Implementation
Although software engineering tends to focus more on requirements analysis, design,
and processes rather than implementation, a bad implementation will definitely mean a
bad program even if all the other pieces are perfect. Although for simple programs almost
anything will do, following a few simple rules will generally make all your programming
easier. Here we will discuss only a few language-independent rules, and point you to other
books in the References and Suggested Readings section at the end of this chapter.

�� The most important rule is to be consistent—especially in your choice of names, capi-
talization, and programming conventions. If you are programming alone, the particular
choice of conventions is not important as long as you are consistent. You should also
try to follow the established conventions of the programming language you are using,
even if it would not otherwise be your choice. This will ensure that you do not introduce
two conventions. For example, it is established practice in Java to start class names with
uppercase letters and variable names with lowercase letters. If your name has more
than one word, use capitalization to signal the word boundaries. This results in names
such as FileClass and fileVariable. In C, the convention is to use lowercase almost
exclusively and to separate with an underscore. Thus, when we program in C, we fol-
low the C conventions. The choice of words for common operations is also dictated by
convention. For example, printing, displaying, showing, or echoing a variable are some
of the terminologies meaning similar actions. Language conventions also provide hints
as to default names for variables, preference for shorter or longer names, and other
issues. Try to be as consistent as possible in your choice, and follow the conventions for
your language.
�� Choose names carefully. In addition to being consistent in naming, try to make sure names
for functions and variables are descriptive. If the names are too cumbersome or if a good
name cannot be easily found, that is usually a sign that there may be a problem in the
design. A good rule of thumb is to choose long, descriptive names for things that will have

1.4  Implementations 9

